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1. INTRODUCTION

This report summarizes the results of an experimental study on the mechanical properties of

fresh-water ice. The work was performed during the period April 1, 1984 - December 31, 1987, M

and was designed primarily to determine whether pre-existing cracks affect the tensile strength. It

was also designed to measure the brittle compressive strength and (from results (1-3) obtained

under an earlier ARO-funded study) to determine the ratio of the compressive to the tensile strength

of crack-free ice.

During the investigation the question of notch strengthening arose. Ceramics exhibit this effect,

and so it seemed that ice might too. The question of end-constraint and a possible effect on brittle

compressive fracture also arose. Rocks and brittle steel display an effect and so again it seemed

that ice might. Thus, additional work was performed (supported in part by the ARO) and is

summarized here.

2. THE TENSILE STRENGTH OF CRACKED ICE

Experiments were performed using large, cylindrically shaped specimens (10 cm dia. X 25 cm)

of equiaxed and randomly aggregates of fresh-water ice prepared ( as described elsewhere (1-3)) in

the laboratory from distilled, deionized and degassed water. Initially, cracks were introduced by

radially compressing the specimens over part of their mid-section using a specially built pressure

cell and by monitoring the process by monitoring accoustical emissions. Subsequently, cracks were

introduced simply by straining the specimens in tension at 10-7 s-1 at -100C. The latter procedure

has the advantages of greater control of crack number density and of less elapsed time (during

which healing could occur) between crack nucleation and subsequent propagation.

The pre-cracked specimens were strained to fracture at -IOC at 10-3 s 1. Under these conditiom

the strength of crack-free material of grain size from about 1 mm to about 10 mm is controlled by

crack nucleation (3).

The results are detailed in a manuscript which has been submitted for publication ("The Tensile

Strength of Cracked Ice"). They may be summarized as follows:
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(i). Long, sharp cracks reduce the tensile strength. Long" in this sense means a crack I

diameter equal to or greater than 2cc where

2
7t _KIC

2 aY+ kd-/

ao = 0.51MPa and k = 0.03 MPa • m1/ 2 at E = 103s "! (ref. 3); Kic= 0.058 + 0.041 d-1 /2

MPa • m1/2 for grain size, d, in mm (4).

The reduction in strength at -100 C at 10-3 s-1 may be expressed by the relationship:

AoT = 0O + (k - (1 / 0 1/2 Kic) d"1/2

where a = 3.6 ± 0.7 and is the constant of proportionality between the grain size and the crack

size, 2c.

(ii). When the existing cracks reduce the strength, the tensile strength is controlled by the

stress to propagate those cracks and is given by the relationship:

aTp = (n / 2) 1/2 Kc (2c) -1/'2

(iii). Short cracks or long ones that under load have been blunted by creep deformation at the

crack tip have no effect on the tensile strength. In this case, the strength is controlled by the stress

to nucleate a fresh crack and is given by the relationship:

T -
N = go+ kd - 1/2

where the parameters and their values are the same as noted above.

3. THE BRrITLE COMPRESSIVE STRENGTH

Experiments under uniaxial compression were performed on the same material at -10'C and at

-50'C at 10-3 s-1 and at -10'C at 10-3 s- 1. The grain size was varied from about 1.5 mm to about

9mm.

A preliminary account (5) of the work has been published. The results may be summarized as

follows:

p. 2



(i). Under high-rate compression where ice exhibits brittle behavior, fracture is more

complicated than under tension. Crack nucleation and propagation are still important, but now

ice-on-ice sliding across the opposing faces of shear cracks and the attendant frictional resistance

to sliding become important. Also important is the formation within the tensile stress fields at

opposite ends of loaded shear cracks of axially aligned wings or out-of-plane extensions to the

shear cracks. Important, too, are the stable crack growth under increasing applied stress and the

interaction of one crack with another.

(ii). These considerations and the experimental data reveal that the unconfined brittle

compressive strength, ac, of ice may be expressed by the relationship:

Z Kic d-1/2
c=

(1T + 2)1 _2

where

4 1
= -tan 2TC.

where g± is the coefficient of friction of ice on ice and T'c is the angle between the direction of the
principal compressive load and the plane on which the shear stress effective in forming the wings is

a maximum.

(iii). An important implication of the above model is that the coefficient of sliding friction has a

major effect on the brittle compressive strength . The increase in its value with decreasing

temperature is the primary reason for the marked (i.e., 2.5 X ) increase in strength upon reducing

the temperature from -10'C to -50'C (5). Similarly, the decrease in its value with sliding velocit

at high velocities (6) is most probably the reason the strength falls by about 30% upon raising the

strain rate from 10-3 s-1 to 10 -1s. These points are discussed at length in ref. 5.

(iv). The ratio of the compressive to the tensile strength appears to depend upon both

temperature and strain rate. Although firm statements cannot yet be made owing to difficulties

encountered in testing ice in tension at -50'C, preliminary data suggest that under conditions whe:

crack propagation governs the tensile strength, the ratio increases from about 8 at -10C to about 15
at -50 0C. This difference is attributed primarily to the drying up (i.e., increase in sliding friction

of crack surfaces and thus to the increase in the compressive strength. The tensile strength appears
to increase only moderately with temperature (2).

p. 3



4. EFFECT OF END-CONSTRAINT ON BRITITLE COMPRESSIVE STRENGTH I

Ice of the type described above was compressed at -100 C at 10-3s-1 under four different end

conditions:
1. ice bonded to stainless steel

2. ice bonded to Synthane (a phenolic resin strengthened with cotton fibres)

3. ice in direct(but not bonded) contact with a brass plate

4. as 3., but with a thin (0.2 mm) insert of latex rubber.

Seven tests were performed under each of these conditions.

The results showed that the fracture mode changes from shear faulting for conditions 1, 2 and 3

to axial splitting for condition 4. Correspondingly, the microcrack distribution, as revealed through

high-speed photography, changes from a central concentration for conditions 1, 2 and 3 to an

end-zone concentration for condition 4. When coupled with the fact that microcracks nucleate under

shear stresses, these observations show that conditions 1, 2 and 3 impose a radial compressive

stress and that condition 4 imposes a radial tensile stress within the specimen near its ends.

The brittle fracture strength is moderately affected by the end constraint. In order of condition

1 to 4, the strength falls from 6.36 ± 0.84 to 5.62 ± 0.73 to 5.23 ± 0.79 to 4.98 ± 0.90 MPa. The

trend suggests a reduction in the magnitude of the compressive constraint in the order noted.

A note of caution is appropriate. These results may be applicable only to the specific kind of ice

tested under the specific conditions noted. Columnar ice, for instance, may exhibit a greater effect.

The work is currently being prepared for presentation at and for publication in the proceedings

of the 9th I.A.H.R. symposium on ice, to be held during August 1988.

5. NOTCH STRENGTHENING

Tensile tests were performed on circumferentially notched and unnotched specimens of the
above type at -10°C stressed at a constant rate of 100 Pa s 1 (across the notched section in that

case). The grain size was varied from 2.2 to 7.3 mm.

The strength of the unnotched specimens increased with decreasing grain size, d, according to a

d"1f2 relationship, in quantitative agreement with the results obtained from an earlier study (3)

performed at a constant strain rate of 10-7 s-1. In this case, as in the earlier one, the strength

extrapolated to zero for d-1/ = 0, suggesting that the strength was controlled by the propagation of

cracks nucleated during straining.

p. 4 I



Although scattered, the strength of the notched specimens also obeyed a d"112 relationship. In
this case, however, the strength extrapolated to 0.8 MPa for d 112 = 0 and the sensitivity of the

strength to grain size was lower.

From a comparison of the strengths of the two kinds of specimen it was clear that the notch
strengthened the more coarsely grained ice (0.90 ± 0.02 MPa vs 0.65 ± 0.05 MPa, d = 7.3mm) but
had no significant effect on the strenth of the more finely grained material (1.04 ± 0.02 MPa vs.
0.96 ± 0.07 MPa, d = 2.2mm). In other words, the notch strengthening effect diminished with
decreasing grain size, and disappeared when the grain size reached about 2 to 3 mm.

These results are described more fully in a manuscript ("A Notch Strengthening Effect in
Freshwater Ice") which has been submitted for publication. The effect can be explained in terms of
the suppression of crack nucleation (which is a shear process) by the triaxial tensile stress induced
within the material ahead of the notch. In other words, the strength of the slowly loaded notched
material is not controlled by the propagation of the circumferential notch as it is at higher stress
rates, but by the nucleation of new cracks across the reduced cross-section.

The implication is that creep blunts the circumferential notch, just as it can blunt internal cracks
in loaded ice (See Section 2). Calculations support this view.
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